acl acl2011 acl2011-41 acl2011-41-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Daniel Ortiz-Martinez ; Luis A. Leiva ; Vicent Alabau ; Ismael Garcia-Varea ; Francisco Casacuberta
Abstract: State-of-the-art Machine Translation (MT) systems are still far from being perfect. An alternative is the so-called Interactive Machine Translation (IMT) framework, where the knowledge of a human translator is combined with the MT system. We present a statistical IMT system able to learn from user feedback by means of the application of online learning techniques. These techniques allow the MT system to update the parameters of the underlying models in real time. According to empirical results, our system outperforms the results of conventional IMT systems. To the best of our knowledge, this online learning capability has never been provided by previous IMT systems. Our IMT system is implemented in C++, JavaScript, and ActionScript; and is publicly available on the Web.
S. Barrachina, O. Bender, F. Casacuberta, J. Civera, E. Cubel, S. Khadivi, A. Lagarda, H. Ney, J. Tom a´s, and E. Vidal. 2009. Statistical approaches to computer-assisted translation. Computational Linguistics, 35(1):3–28. N. Cesa-Bianchi, G. Reverberi, and S. Szedmak. 2008. Online learning algorithms for computer-assisted translation. Deliverable D4.2, SMART: Stat. Multilingual Analysis for Retrieval and Translation. G. Foster, P. Isabelle, and P. Plamondon. 1997. Targettext mediated interactive machine translation. Ma- chine Translation, 12(1): 175–194. G. Foster, P. Langlais, and G. Lapalme. 2002. Transtype: text prediction for translators. In Proc. HLT, pages 372–374. P. Isabelle and K. Church. 1997. Special issue on new tools for human translators. Machine Translation, 12(1–2). P. Koehn. 2005. Europarl: A parallel corpus for statistical machine translation. In Proc. of the MT Summit X, pages 79–86, September. P. Koehn. 2009. A web-based interactive computer aided translation tool. In Proc. ACL-IJCNLP, ACLDemos, pages 17–20. P. Langlais, G. Lapalme, and M. Loranger. 2002. Transtype: Development-evaluation cycles to boost translator’s productivity. Machine Translation, 15(4):77–98. R.M. Neal and G.E. Hinton. 1998. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Proc. of the NATO-ASI on Learning in graphical models, pages 355–368, Norwell, MA, USA. L. Nepveu, G. Lapalme, P. Langlais, and G. Foster. 2004. Adaptive language and translation models for interactive machine translation. In Proc. EMNLP, pages 190– 197. F. J. Och and H. Ney. 2002. Discriminative Training and Maximum Entropy Models for Statistical Machine Translation. In Proc. ACL, pages 295–302. D. Ortiz-Mart ı´nez, I. Garc ı´a-Varea, and F. Casacuberta. 2010. Online learning for interactive statistical machine translation. In Proc. NAACL/HLT, pages 546– 554.