acl acl2010 acl2010-107 acl2010-107-reference knowledge-graph by maker-knowledge-mining

107 acl-2010-Exemplar-Based Models for Word Meaning in Context


Source: pdf

Author: Katrin Erk ; Sebastian Pado

Abstract: This paper describes ongoing work on distributional models for word meaning in context. We abandon the usual one-vectorper-word paradigm in favor of an exemplar model that activates only relevant occurrences. On a paraphrasing task, we find that a simple exemplar model outperforms more complex state-of-the-art models.


reference text

R. Bar-Haim, I. Dagan, I. Greental, and E. Shnarch. 2007. Semantic inference at the lexical-syntactic level. In Proceedings of AAAI, pages 871–876, Vancouver, BC. M. Baroni and A. Lenci. 2009. One distributional memory, many semantic spaces. In Proceedings of the EACL Workshop on Geometrical Models of Natural Language Semantics, Athens, Greece. W. Daelemans, A. van den Bosch, and J. Zavrel. 1999. Forgetting exceptions is harmful in language learning. Machine Learning, 34(1/3): 11–43. Special Issue on Natural Language Learning. K. Erk and S. Pad o´. 2008. A structured vector space 96 model for word meaning in context. In Proceedings of EMNLP, pages 897–906, Honolulu, HI. K. Erk and S. Pad o´. 2009. Paraphrase assessment in structured vector space: Exploring parameters and datasets. In Proceedings of the EACL Workshop on Geometrical Models of Natural Language Semantics, Athens, Greece. R. Florian, S. Cucerzan, C. Schafer, and D. Yarowsky. 2002. Combining classifiers for word sense disambiguation. Journal of Natural Language Engineering, 8(4):327–341. J. Gorman and J. R. Curran. 2006. Scaling distributional similarity to large corpora. In Proceedings of ACL, pages 361–368, Sydney. T. Griffiths, K. Canini, A. Sanborn, and D. J. Navarro. 2007. Unifying rational models of categorization via the hierarchical Dirichlet process. In Proceedings of CogSci, pages 323–328, Nashville, TN. A. Kilgarriff. 1997. Idon’t believe in word senses. Computers and the Humanities, 3 1(2):91–1 13. W. Kintsch. 2001 . Predication. 25:173–202. Cognitive Science, T. Landauer and S. Dumais. 1997. A solution to Platos problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2):21 1–240. D. McCarthy and J. Carroll. 2003. Disambiguating nouns, verbs, and adjectives using automatically acquired selectional preferences. Computational Linguistics, 29(4):639–654. D. McCarthy and R. Navigli. 2009. The English lexical substitution task. Language Resources and Evaluation, 43(2): 139–159. Special Issue on Compu- tational Semantic Analysis of Language: SemEval2007 and Beyond. S. McDonald and M. Ramscar. 2001. Testing the distributional hypothesis: The influence of context on judgements of semantic similarity. In Proceedings of CogSci, pages 611–616. J. Mitchell and M. Lapata. 2008. Vector-based models of semantic composition. In Proceedings of ACL, pages 236–244, Columbus, OH. G. L. Murphy. 2002. The Big Book of Concepts. MIT Press. G Salton, A Wang, and C Yang. 1975. A vectorspace model for information retrieval. Journal of the American Society for Information Science, 18:613– 620. H. Sch u¨tze. 1998. Automatic word sense discrimination. Computational Linguistics, 24(1):97–124. I. Szpektor, I. Dagan, R. Bar-Haim, and J. Goldberger. 2008. Contextual preferences. In Proceedings of ACL, pages 683–691, Columbus, OH. S. Thater, G. Dinu, and M. Pinkal. 2009. Ranking paraphrases in context. In Proceedings of the ACL Workshop on Applied Textual Inference, pages 44– 47, Singapore. W. Voorspoels, W. Vanpaemel, and G. Storms. 2009. The role of extensional information in conceptual combination. In Proceedings of CogSci. 97